

Mayhill Junior School

MAYHILL JUNIOR SCHOOL

CALCULATION POLICY

UPPER KS2

Aligned with Power Maths calculation policy

KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Addition and subtraction: Children build

 on their column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage.Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.
Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and division: In all year groups, Think it Link it Boards in order to build children's understanding of multiplicative reasoning and the linked facts. Building on their understanding, children develop methods to multiply up to 4-digit numbers by single-digit and 2digit numbers.
Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10, 100 and 1,000 . Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.
Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them.
Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic. Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: $50 \%, 25 \%, 10 \%$ and 1\%.

Year 5

	Concrete	Pictorial	Abstract
Year 5 Addition			
Column addition with whole numbers	Use place value equipment to represent additions. Add a row of counters onto the place value grid to show 15,735 + 4,012.	Represent additions, using place value equipment on a place value grid alongside written methods. I need to exchange 10 tens for a 100.	Use column addition, including exchanges.
Representing additions		Bar models represent addition of two or more numbers in the context of problem solving.	Use approximation to check whether answers are reasonable. I will use $23,000+8,000$ to check.
Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m .	Use a bar model with a number line to add tenths.	Understand the link with adding fractions. $\frac{6}{10}+\frac{2}{10}=\frac{8}{10}$

	How long are they when added together? $0.6 \mathrm{~m} \quad 0.2 \mathrm{~m}$ \square	$0.6+0.2=0.8$ 6 tenths +2 tenths $=8$ tenths	6 tenths +2 tenths $=8$ tenths $06+02=0.8$
Adding decimals using column addition	Use place value equipment to represent additions. Show $0.23+0.45$ using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. $\begin{array}{r} 0 \cdot \text { Tth } \\ \hline 0 \text { Hth } \\ \hline 0 \cdot 9 \\ +0 \cdot 3 \\ \hline 1 \cdot \end{array}$ Include examples where the numbers of decimal places are different.	Add using a column method, ensuring that children understand the link with place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 23 \\ +0 \cdot 45 \\ \hline 0 \cdot 6 \\ \hline \end{array}$ Include exchange where required, alongside an understanding of place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 9 \\ +0 \cdot 3 \\ \hline 0 \cdot 3 \\ \hline 1 \cdot 2 \end{array}$ Include additions where the numbers of decimal places are different. $\begin{aligned} & 3.4+0.65=? \\ & \begin{array}{l} 0 \cdot \text { Tth Hth } \\ \hline 3 \cdot 4 r 0 \\ +0 \cdot 6 \quad 5 \\ \hline \end{array} \end{aligned}$
Year 5 Subtraction			
Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required.	Represent the stages of the calculation using place value equipment on a grid alongside the	Use column subtraction methods with exchange where required.

	$2,250-1,070$	calculation, including exchanges where required.$15,735-2,582=13,153$TTh Th H T O 00000 00000 $000 \varnothing \varnothing$$\begin{aligned} & \text { TTh Th H T } \mathrm{O} \\ & \hline 1 \end{aligned}$$\begin{array}{lllll} \hline 1 & 5 & 7 & 3 & 5 \\ & 2 & 5 & 8 & 2 \end{array}$$\qquad$ Now subtract the 10s. Exchange I hundred for 10 tens. Subtract the $100 \mathrm{~s}, 1,000$ s and 10,000 s. \square $\begin{array}{llllll} \hline 1567 & 5 & 5 \\ \hline & 5 & 8 & 7 \end{array}$ $\begin{array}{lllll} & 2 & 5 & 8 & 2 \\ \hline 1 & 3 & 1 & 5 & 3 \\ \hline \end{array}$	$62,097-18,534=43,563$
Checking strategies and representing subtractions		Bar models represent subtractions in problem contexts, including 'find the difference'.	Children can explain the mistake made when the columns have not been ordered correctly. Use approximation to check calculations. I calculated $18,000+4,000$ mentally to check my subtraction.
Choosing efficient methods			To subtract two large numbers that are close, children find the difference by counting on. $2,002-1,995=?$ Use addition to check subtractions.

	8 is a cube number.	12 is not a square number, because you cannot multiply a whole number by itself to make 12.	
Multiplying by 10,100 and 1,000	Use place value equipment to multiply by 10,100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10 .	Understand how exchange relates to the digits when multiplying by 10,100 and 1,000. $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$
Multiplying by multiples of 10,100 and 1,000	Use place value equipment to explore multiplying by unitising. 5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens. So, I know that 5 groups of 3 thousands would be 15 thousands.	Use place value equipment to represent how to multiply by multiples of 10,100 and 1,000 . $\begin{array}{ll} 4 \times 3=12 & 6 \times 4=24 \\ 4 \times 300=1,200 & 6 \times 400= \\ 2,400 & \end{array}$	Use known facts and unitising to multiply. $\begin{aligned} & 5 \times 4=20 \\ & 5 \times 40=200 \\ & 5 \times 400=2,000 \\ & 5 \times 4,000-20,000 \\ & 5,000 \times 4=20,000 \end{aligned}$
Multiplying up to 4-digit numbers by a single digit	Explore how to use partitioning to multiply efficiently. $8 \times 17=?$	Represent multiplications using place value equipment and add the 1 s , then 10 s , then 100 s , then 1,000 s.	Use an area model and then add the parts.

, grouping and sharing	/ made 7 groups of 4. There are 28 in total. I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. I have 28 in total. I made groups of 4. There are 7 equal groups.		$12 \div 3=$ $12 \div$ \square $\times 3=12$ $\div 3=12$ Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div ?=2 \\ & 22 \div 2=? \\ & ? \div 2=22 \\ & ? \div 22=2 \end{aligned}$
Dividing whole numbers by 10, 100 and 1,000	Use place value equipment to support unitising for division. $4,000 \div 1,000$ 4,000 is 4 thousands. $4 \times 1,000=4,000$ So, $4,000 \div 1,000=4$	Use a bar model to support dividing by unitising. $380 \div 10=38$ 380 is 38 tens. $38 \times 10=380$ $10 \times 38=380$ So, $380 \div 10=38$	Understand how and why the digits change on a place value grid when dividing by 10,100 or 1,000 . $3,200 \div 100=?$ 3,200 is 3 thousands and 2 hundreds. $\begin{aligned} & 200 \div 100=2 \\ & 3,000 \div 100=30 \\ & 3,200 \div 100=32 \end{aligned}$ So, the digits will move two places to the right.
Dividing by multiples of 10,100 and 1,000	Use place value equipment to represent known facts and unitising.	Represent related facts with place value equipment when dividing by unitising.	Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check. $\begin{aligned} & 3,000 \div 5=600 \\ & 3,000 \div 50=60 \\ & 3,000 \div 500=6 \end{aligned}$

	15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=5$ 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$	180 is 18 tens. 18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$ 12 ones divided into groups of 4 . There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	$\begin{aligned} & 5 \times 600=3,000 \\ & 50 \times 60=3,000 \\ & 500 \times 6=3,000 \end{aligned}$
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2=?$ There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. $264 \div 2=134$	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting.	Use short division for up to 4-digit numbers divided by a single digit. $\begin{array}{r} \begin{array}{rrrr} 0 & 5 & 5 & 6 \\ 7 & 3^{3} 8{ }^{3} q & 42 \\ 3,892 & \div 7 & =556 \end{array} \\ \end{array}$ Use multiplication to check. $556 \times 7=?$

		 Lay out the problem as a short division. There is 1 group of 4 in 4 tens. There are 2 groups of 4 in 8 ones. Work with divisions that require exchange.	$\begin{aligned} & 6 \times 7=42 \\ & 50 \times 7=350 \\ & 500 \times 7=3500 \\ & 3,500+350+42=3,892 \end{aligned}$
Understandi ng remainders	Understand remainders using concrete versions of a problem. 80 cakes divided into trays of 6 .	Use short division and understand remainders as the last remaining 1s.	In problem solving contexts, represent divisions including remainders with a bar model.

Understandi ng the relationship between fractions and division	Use sharing to explore the link between fractions and division. 1 whole shared between 3 people. Each person receives one-third.	Use a bar model and other fraction representations to show the link between fractions and division. $1 \div 3=\frac{1}{3}$	Use the link between division and fractions to calculate divisions. $\begin{aligned} & 5 \div 4=\frac{5}{4}=1 \frac{1}{4} \\ & 11 \div 4=\frac{11}{4}=2 \frac{3}{4} \end{aligned}$
Year 6			
	Concrete	Pictorial	Abstract
Year 6 Addition			
Comparing and selecting efficient methods	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods.	Discuss similarities and differences between methods, and choose efficient methods based on the specific calculation. Compare written and mental methods alongside place value representations. Use bar model and number line representations to model addition in problem-solving and measure contexts.	Use column addition where mental methods are not efficient. Recognise common errors with column addition.$32,145+4,302=?$TTh Th H T O 3 2 1 4 5 + 4 3 0 2 3 6 4 4 7TTh Th H T O 3 2 1 4 5 +4 3 0 2 7 5 1 6 5 Which method has been completed accurately? What mistake has been made? Column methods are also used for decimal additions where mental methods are not efficient.

			$\begin{array}{rrrrr} \mathrm{H} & \mathrm{~T} & 0 \cdot & \text { Tth Hth } \\ \hline \mathrm{I} & 4 & 0 & \cdot & 0 \\ + & 4 & \mathrm{q} \cdot & 8 & \mathrm{q} \\ \hline & & 8 & 9 \cdot & 9 \\ \hline \end{array}$
Selecting mental methods for larger numbers where appropriate	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods. $2,411,301+500,000=?$ This would be 5 more counters in the HTh place. So, the total is 2,911,301. $2,411,301+500,000=2,911,301$	Use a bar model to support thinking in addition problems. $\begin{array}{r} 257,000+99,000=? \\ ? \end{array}$ \square I added 100 thousands then subtracted 1 thousand. 257 thousands +100 thousands $=357$ thousands $\begin{aligned} & 257,000+100,000=357,000 \\ & 357,000-1,000=356,000 \end{aligned}$ So, $257,000+99,000=356,000$	Use place value and unitising to support mental calculations with larger numbers. $\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$ 195 thousands +6 thousands $=201$ thousands So, $195,000+6,000=201,000$
Understandi ng order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results. $3 \times 5-2=?$	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations.	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \end{aligned}$

larger numbers		$950,000-150,000$ That is 950 thousands - 150 thousands \square 950 So, the difference is 800 thousands. $950,000-150,000=800,000$	
Year 6 Multiplicatio n			
Multiplying up to a 4digit number by a single digit number	Use equipment to explore multiplications. 4 groups of 2,345 This is a multiplication: $\begin{aligned} & 4 \times 2,345 \\ & 2,345 \times 4 \end{aligned}$	Use place value equipment to compare methods. Method I Method 2	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications. Method 3 $12.000+800+80+20=12,900$
Multiplying up to a 4digit number by a 2-digit number		Use an area model alongside written multiplication. Method I	Use compact column multiplication with understanding of place value at all stages.

Using knowledge of factors and partitions to compare methods for multiplication s	Use equipment to understand square numbers and cube numbers. $\begin{aligned} & 5 \times 5=5^{2}=25 \\ & 5 \times 5 \times 5=5^{3}=25 \times 5=125 \end{aligned}$	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately. Represent and compare methods using a bar model.	Use a known fact to generate families of related facts. Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$ Factor bugs are used to show all factors of a given multiple
Multiplying by 10,100 and 1,000	Use place value equipment to explore exchange in decimal multiplication.	Understand how the exchange affects decimal numbers on a place value grid.	Use knowledge of multiplying by 10 , 100 and 1,000 to multiply by multiples of 10,100 and 1,000 . $\begin{aligned} 8 \times 100 & =800 \\ 8 \times 300 & =800 \times 3 \\ & =2,400 \end{aligned}$

	T 0 \bullet Tth \bullet $\cdots(\cdots)$ Represent 0.3. Multiply by 10 . Exchange each group of ten tenths. $0.3 \times 10=?$ 0.3 is 3 tenths. 10×3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones.	T O \bullet Tth \bullet 3$0.3 \times 10=3$	$\begin{aligned} 2.5 \times 10 & =25 \\ 2.5 \times 20 & =2.5 \times 10 \times 2 \\ & =50 \end{aligned}$
Multiplying decimals	Explore decimal multiplications using place value equipment and in the context of measures. 3 groups of 4 tenths is 12 tenths. 4 groups of 3 tenths is 12 tenths. $1.3 \mathrm{~cm} \mathrm{l.3} \mathrm{~cm} 1.3 \mathrm{~cm} \mathrm{l.3} \mathrm{~cm}$ $\begin{aligned} & 4 \times 1 \mathrm{~cm}=4 \mathrm{~cm} \\ & 4 \times 0.3 \mathrm{~cm}=1.2 \mathrm{~cm} \\ & 4 \times 1.3=4+1.2=5.2 \mathrm{~cm} \end{aligned}$	Represent calculations on a place value grid.$\begin{aligned} & 3 \times 3=9 \\ & 3 \times 0 \cdot 3=0 \cdot 9 \end{aligned}$T O \bullet Tth •(1) \bullet ©(1) ©(\%) Understand the link between multiplying decimals and repeated addition.	Use known facts to multiply decimals. $\begin{aligned} & 4 \times 3=12 \\ & 4 \times 0.3=1.2 \\ & 4 \times 0.03=0.12 \\ & 20 \times 5=100 \\ & 20 \times 0.5=10 \\ & 20 \times 0.05=1 \end{aligned}$ Find families of facts from a known multiplication. 1 know that $18 \times 4=72$. This can help me work out: $\begin{aligned} & 1.8 \times 4=? \\ & 18 \times 0.4=? \\ & 180 \times 0.4=? \\ & 18 \times 0.04=? \end{aligned}$ Use a place value grid to understand the effects of multiplying decimals.

			Use an area model to link multiplication and division.
Dividing by a 2-digit number using factors	Understand that division by factors can be used when dividing by a number that is not prime.	Use factors and repeated division. $1,260 \div 14=?$ 1,260 \square \square $1,260 \div 2=630$ $630 \div 7=90$ $1,260 \div 14=90$	Use factors and repeated division where appropriate.
Dividing by a 2-digit number using long division	Use equipment to build numbers from groups. 182 divided into groups of 13. There are 14 groups.	Use an area model alongside written division to model the process. $377 \div 13=?$ 13 \square \square 13 13 $377 \div 13=29$	Use long division where factors are not useful (for example, when dividing by a 2-digit prime number). Write the required multiples to support the division process. $377 \div 13=?$

			A slightly different layout may be used, with the division completed above rather than at the side. $$ $\begin{array}{r} 3 \\ 218 \\ \hline 798 \\ -630 \\ \hline 1688 \\ -\quad 68 \\ \hline \end{array}$ Divisions with a remainder explored in problem-solving contexts.
Dividing by 10, 100 and 1,000	Use place value equipment to explore division as exchange.	Represent division to show the relationship with multiplication. Understand the effect of dividing by 10,100 and 1,000 on the digits on a place value grid.	Use knowledge of factors to divide by multiples of 10, 100 and 1,000. $40 \div 50=$ \square $\begin{aligned} & 40 \rightarrow \div 10 \rightarrow \div \div ? \\ & 40 \rightarrow \div \div+5 \rightarrow+5 \rightarrow+5 \end{aligned}$

	Exchange each 0.1 for ten 0.01 s . Divide 20 counters by 10 . 0.2 is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Understand how to divide using division by 10,100 and 1,000 . $12 \div 20=?$ \square \square ? $1.2 \div 2=0.6$	$\begin{aligned} & 40 \div 5=8 \\ & 8 \div 10=0.8 \end{aligned}$ So, $40 \div 50=0.8$
Dividing decimals	Use place value equipment to explore division of decimals. 8 tenths divided into 4 groups. 2 tenths in each group.	Use a bar model to represent divisions. $4 \times 2=8$ $8 \div 4=2$ So, $4 \times 0.2=0.8$ $0.8 \div 4=0.2$	Use short division to divide decimals with up to 2 decimal places. $\begin{array}{c\|c} 8 & 4 \cdot 2 \quad 4 \\ 0 \cdot \\ 8 & 4 \cdot{ }^{4} 2 \quad 4 \\ & 0 \cdot 5 \\ 8 & 4 \cdot{ }^{4} 2^{2} 4 \\ & 0 \cdot 5 \quad 3 \\ 8 & 4 \cdot{ }^{4} 2^{2} 4 \end{array}$

